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6.1 Introduction
We have discussed, in the previous chapter, the

stresses due to static loading only. But only a few machine
parts are subjected to static loading. Since many of the
machine parts (such as axles, shafts, crankshafts, connecting
rods, springs, pinion teeth etc.) are subjected to variable or
alternating loads (also known as fluctuating or fatigue
loads), therefore we shall discuss, in this chapter, the
variable or alternating stresses.

6.2 Completely Reversed or Cyclic Stresses
Consider a rotating beam of circular cross-section

and carrying a load W, as shown in Fig. 6.1. This load
induces stresses in the beam which are cyclic in nature. A
little consideration will show that the upper fibres of the
beam (i.e. at point A) are under compressive stress and the
lower fibres (i.e. at point B) are under tensile stress. After
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half a revolution, the point B occupies the position of
point A and the point A occupies the position of point B.
Thus the point B is now under compressive stress and
the point A under tensile stress. The speed of variation
of these stresses depends upon the speed of the beam.

From above we see that for each revolution of the
beam, the stresses are reversed from compressive to tensile.
The stresses which vary from one value of compressive to
the same value of tensile or vice versa, are known as completely reversed or cyclic stresses.
Notes: 1. The stresses which vary from a minimum value to a maximum value of the same nature, (i.e. tensile or
compressive) are called fluctuating stresses.

2. The stresses which vary from zero to a certain maximum value are called repeated stresses.

3. The stresses which vary from a minimum value to a maximum value of the opposite nature (i.e. from a
certain minimum compressive to a certain maximum tensile or from a minimum tensile to a maximum compressive)
are called alternating stresses.

6.3 Fatigue and Endurance Limit
It has been found experimentally that when a material is subjected to repeated stresses, it fails at

stresses below the yield point stresses. Such type of failure of a material is known as fatigue. The
failure is caused by means of a progressive crack formation which are usually fine and of microscopic
size. The failure may occur even without any prior indication. The fatigue of material is effected by
the size of the component, relative magnitude of static and fluctuating loads and the number of load
reversals.

Fig. 6.2. Time-stress diagrams.

In order to study the effect of fatigue of a material, a rotating mirror beam method is used. In
this method, a standard mirror polished specimen, as shown in Fig. 6.2 (a), is rotated in a fatigue

Fig. 6.1. Reversed or cyclic stresses.
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testing machine while the specimen is loaded
in bending. As the specimen rotates, the
bending stress at the upper fibres varies from
maximum compressive to maximum tensile
while the bending stress at the lower fibres
varies from maximum tensile to maximum
compressive. In other words, the specimen is
subjected to a completely reversed stress cycle.
This is represented by a time-stress diagram
as shown in Fig. 6.2 (b). A record is kept of
the number of cycles required to produce
failure at a given stress, and the results are
plotted in stress-cycle curve as shown in Fig.
6.2 (c). A little consideration will show that if
the stress is kept below a certain value as shown
by dotted line in Fig. 6.2 (c), the material will not fail whatever may be the number of cycles. This
stress, as represented by dotted line, is known as endurance or fatigue limit (σe). It is defined as
maximum value of the completely reversed bending stress which a polished standard specimen can
withstand without failure, for infinite number of cycles (usually 107 cycles).

It may be noted that the term endurance limit is used for reversed bending only while for other
types of loading, the term endurance strength may be used when referring the fatigue strength of the
material. It may be defined as the safe maximum stress which can be applied to the machine part
working under actual conditions.

We have seen that when a machine member is subjected to a completely reversed stress, the
maximum stress in tension is equal to the maximum stress in compression as shown in Fig. 6.2 (b). In
actual practice, many machine members undergo different range of stress than the completely
reversed stress.

The stress verses time diagram for fluctuating stress having values σmin and σmax is shown in
Fig. 6.2 (e). The variable stress, in general, may be considered as a combination of steady (or mean or
average) stress and a completely reversed stress component σv. The following relations are derived
from Fig. 6.2 (e):

1. Mean or average stress,

σm =
2

max minσ + σ

2. Reversed stress component or alternating or variable stress,

σv =
2

max minσ − σ

Note: For repeated loading, the stress varies from maximum to zero (i.e. σmin = 0) in each cycle as shown in Fig.
6.2 (d).

∴ σm = σv = 
2

σmax

3. Stress ratio, R = 
max

min

σ
σ . For completely reversed stresses, R = – 1 and for repeated stresses,

R = 0. It may be noted that R cannot be greater than unity.

4. The following relation between endurance limit and stress ratio may be used

σ'e =
3

2
e

R

σ
−

A machine part is being turned on a Lathe.
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where σ'e = Endurance limit for any stress range represented by R.

σe = Endurance limit for completely reversed stresses, and

R = Stress ratio.

6.4 Effect of Loading on Endurance Limit—Load Factor
The endurance limit (σe) of a material as determined by the rotating beam method is for

reversed bending load. There are many machine members which are subjected to loads other than
reversed bending loads. Thus the endurance limit will
also be different for different types of loading. The
endurance limit depending upon the type of loading may
be modified as discussed below:

Let Kb = Load correction factor for the
reversed or rotating bending  load.
Its value is usually taken as unity.

Ka = Load correction factor for the
reversed axial load. Its value  may
be taken as 0.8.

Ks = Load correction factor for the
reversed torsional or shear load. Its
value may be taken as 0.55 for
ductile materials and 0.8 for brittle
materials.

∴ Endurance limit for reversed bending load, σeb = σe.Kb = σe ...( QKb = 1)

Endurance limit for reversed axial load, σea = σe.Ka

and endurance limit for reversed torsional or shear load, τe = σe.Ks

6.5 Effect of Surface Finish on Endurance Limit—Surface Finish Factor
When a machine member is subjected to variable loads, the endurance limit of the material for

that member depends upon the surface conditions. Fig. 6.3 shows the values of surface finish factor
for the various surface conditions and ultimate tensile strength.

Fig. 6.3. Surface finish factor for various surface conditions.

When the surface finish factor is known, then the endurance limit for the material of the machine
member may be obtained by multiplying the endurance limit and the surface finish factor. We see that

Shaft drive.
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for a mirror polished material, the surface finish factor is unity. In other words, the endurance limit for
mirror polished material is maximum and it goes on reducing due to surface condition.

Let  Ksur = Surface finish factor.

∴ Endurance limit,

σe1 = σeb.Ksur = σe.Kb.Ksur = σe.Ksur ...( Q  Kb = 1)

...(For reversed bending load)

= σea.Ksur = σe.Ka.Ksur ...(For reversed axial load)

= τe.Ksur = σe.Ks.Ksur ...(For reversed torsional or shear load)

Note : The surface finish factor for non-ferrous metals may be taken as unity.

6.6 Effect of Size on Endurance Limit—Size Factor
A little consideration will show that if the size of the standard specimen as shown in Fig. 6.2 (a)

is increased, then the endurance limit of the material will decrease. This is due to the fact that a longer
specimen will have more defects than a smaller one.

Let  Ksz = Size factor.

∴ Endurance limit,

σe2 = σe1 × Ksz ...(Considering surface finish factor also)

= σeb.Ksur.Ksz = σe.Kb.Ksur.Ksz = σe.Ksur.Ksz ( Q  Kb = 1)

= σea.Ksur.Ksz = σe.Ka.Ksur.Ksz ...(For reversed axial load)

= τe.Ksur.Ksz = σe.Ks.Ksur.Ksz ... (For reversed torsional or shear load)

Notes: 1. The value of size factor is taken as unity for the standard specimen having nominal diameter of
7.657 mm.

2. When the nominal diameter of the specimen is more than 7.657 mm but less than 50 mm, the value of
size factor may be taken as 0.85.

3. When the nominal diameter of the specimen is more than 50 mm, then the value of size factor may be
taken as 0.75.

6.7 Effect of Miscellaneous Factors on
Endurance Limit

In addition to the surface finish factor (Ksur),
size factor (Ksz) and load factors Kb, Ka and Ks, there
are many other factors such as reliability factor (Kr),
temperature factor (Kt), impact factor (Ki) etc. which
has effect on the endurance limit of a material. Con-
sidering all these factors, the endurance limit may be
determined by using the following expressions :

1. For the reversed bending load, endurance
limit,

σ'e = σeb.Ksur.Ksz.Kr.Kt.Ki

2. For the reversed axial load, endurance limit,
σ'e = σea.Ksur.Ksz.Kr.Kt.Ki

3. For the reversed torsional or shear load,
endurance limit,

σ'e = τe.Ksur.Ksz.Kr.Kt.Ki

In solving problems, if the value of any of the
above factors is not known, it may be taken as unity.

In addition to shear, tensile, compressive and
torsional stresses, temperature can add its own

stress  (Ref. Chapter 4)
Note : This picture is given as additional information
and is not a direct example of the current chapter.
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6.8 Relation Between Endurance Limit and Ultimate Tensile Strength
It has been found experimentally that endurance limit (σe) of a material subjected to fatigue

loading is a function of ultimate tensile strength (σu). Fig. 6.4 shows the endurance limit of steel
corresponding to ultimate tensile strength for different surface conditions. Following are some
empirical relations commonly used in practice :

Fig. 6.4. Endurance limit of steel corresponding to ultimate tensile strength.

For steel, σe = 0.5 σu ;

For cast steel, σe = 0.4 σu ;

For cast iron, σe = 0.35 σu ;

For non-ferrous metals and alloys,  σe = 0.3 σu

6.9 Factor of Safety for Fatigue Loading
When a component is subjected to fatigue loading, the endurance limit is the criterion for faliure.

Therefore, the factor of safety should be based on endurance limit. Mathematically,

Factor of safety (F.S.) =
Endurance limit stress

Design or working stress
e

d

σ
=

σ
Note:    For steel, σe = 0.8 to 0.9 σy

where σe = Endurance limit stress for completely reversed stress cycle, and

σy = Yield point stress.

Example 6.1. Determine the design stress for a piston rod where the load is completely
reversed. The surface of the rod is ground and
the surface finish factor is 0.9. There is no stress
concentration. The load is predictable and the
factor of safety is 2.

Solution. Given : Ksur = 0.9 ; F.S. = 2

The piston rod is subjected to reversed
axial loading. We know that for reversed axial
loading, the load correction factor (Ka) is 0.8.

Piston rod
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Fig. 6.5. Stress concentration.

If σe is the endurance limit for reversed bending load, then endurance limit for reversed axial
load,

σea = σe × Ka × Ksur = σe × 0.8 × 0.9 = 0.72 σe

We know that design stress,

σd =  
0.72

0.36
. . 2
ea e

eF S

σ σ
= = σ Ans.

6.10 Stress Concentration
Whenever a machine component changes the shape of its cross-section, the simple stress

distribution no longer holds good and the neighbourhood of the discontinuity is different. This
irregularity in the stress distribution caused by abrupt changes of form is called stress concentration.
It occurs for all kinds of stresses in the presence of fillets, notches, holes, keyways, splines, surface
roughness or scratches etc.

In order to understand fully the idea of stress
concentration, consider a member with different
cross-section under a tensile load as shown in
 Fig. 6.5. A little consideration will show that the
nominal stress in the right and left hand sides will
be uniform but in the region where the cross-
section is changing, a re-distribution of the force
within the member must take place. The material
near the edges is stressed considerably higher than the average value. The maximum stress occurs at
some point on the fillet and is directed parallel to the boundary at that point.

6.11 Theoretical or Form Stress Concentration Factor
The theoretical or form stress concentration factor is defined as the ratio of the maximum stress

in a member (at a notch or a fillet) to the nominal stress at the same section based upon net area.
Mathematically, theoretical or form stress concentration factor,

          Kt = 
Maximum stress

Nominal stress
The value of Kt depends upon the material and geometry of the part.

Notes: 1. In static loading, stress concentration in ductile materials is not so serious as in brittle materials,
because in ductile materials local deformation or yielding takes place which reduces the concentration. In brittle
materials, cracks may appear at these local concentrations of stress which will increase the stress over the rest of
the section. It is, therefore, necessary that in designing parts of brittle materials such as castings, care should be
taken. In order to avoid failure due to stress concentration, fillets at the changes of section must be provided.

2. In cyclic loading, stress concentration in ductile materials is always serious because the ductility of the
material is not effective in relieving the concentration of stress caused by cracks, flaws, surface roughness, or
any sharp discontinuity in the geometrical form of the member. If the stress at any point in a member is above the
endurance limit of the material, a crack may develop under the action of repeated load and the crack will lead to
failure of the member.

6.12 Stress Concentration due to Holes and Notches
Consider a plate with transverse elliptical hole and subjected to a tensile load as shown in Fig.

6.6 (a). We see from the stress-distribution that the stress at the point away from the hole is practically
uniform and the maximum stress will be induced at the edge of the hole. The maximum stress is given
by

σmax =
2

1
⎛ ⎞σ +⎜ ⎟
⎝ ⎠

a

b
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and the theoretical stress concentration factor,

Kt =  
2

1max a

b

σ ⎛ ⎞= +⎜ ⎟⎝ ⎠σ
When a/b is large, the ellipse approaches a crack transverse to the load and the value of Kt

becomes very large. When a/b is small, the ellipse approaches a longitudinal slit [as shown in Fig. 6.6
(b)] and the increase in stress is small. When the hole is circular as shown in Fig. 6.6 (c), then a/b = 1
and the maximum stress is three times the nominal value.

Fig. 6.6. Stress concentration due to holes.

The stress concentration in the notched tension member, as
shown in Fig. 6.7, is influenced by the depth a of the notch and radius
r at the bottom of the notch. The maximum stress, which applies to
members having notches that are small in comparison with the width
of the plate, may be obtained by the following equation,

σmax =
2

1⎛ ⎞σ +⎜ ⎟
⎝ ⎠

a

r

6.13 Methods of Reducing Stress Concentration
We have already discussed in Art 6.10 that whenever there is a

change in cross-section, such as shoulders, holes, notches or keyways and where there is an interfer-
ence fit between a hub or bearing race and a shaft, then stress concentration results. The presence of

stress concentration can not be totally eliminated but it may be reduced to some extent. A device or
concept that is useful in assisting a design engineer to visualize the presence of stress concentration

Fig. 6.7. Stress concentration
due to notches.

Crankshaft
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and how it may be mitigated is that of stress flow lines, as shown in Fig. 6.8. The mitigation of stress
concentration means that the stress flow lines shall maintain their spacing as far as possible.

Fig. 6.8

In Fig. 6.8 (a) we see that stress lines tend to bunch up and cut very close to the sharp re-entrant
corner. In order to improve the situation, fillets may be provided, as shown in Fig. 6.8 (b) and (c) to
give more equally spaced flow lines.

Figs. 6.9 to 6.11 show the several ways of reducing the stress concentration in shafts and other
cylindrical members with shoulders, holes and threads respectively. It may be noted that it is not
practicable to use large radius fillets as in case of ball and roller bearing mountings. In such cases,
notches may be cut as shown in Fig. 6.8 (d) and Fig. 6.9 (b) and (c).

Fig. 6.9. Methods of reducing stress concentration in cylindrical members with shoulders.

Fig. 6.10. Methods of reducing stress concentration in cylindrical members with holes.

Fig. 6.11. Methods of reducing stress concentration in cylindrical members with holes.

The stress concentration effects of a press fit may be reduced by making more gradual transition
from the rigid to the more flexible shaft. The various ways of reducing stress concentration for such
cases are shown in Fig. 6.12 (a), (b) and (c).
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6.14 Factors to be Considered while Designing Machine Parts to Avoid
Fatigue Failure

The following factors should be considered while designing machine parts to avoid fatigue failure:
1. The variation in the size of the component should be as gradual as possible.
2. The holes, notches and other stress raisers should be avoided.
3. The proper stress de-concentrators such as fillets and notches should be provided

wherever necessary.

Fig. 6.12. Methods of reducing stress concentration of a press fit.

4. The parts should be protected from corrosive atmosphere.

5. A smooth finish of outer surface of the component increases the fatigue life.

6. The material with high fatigue strength should be selected.

7. The residual compressive stresses over the parts surface increases its fatigue strength.

6.15 Stress Concentration Factor for Various Machine Members
The following tables show the theoretical stress concentration factor for various types of

members.

Table 6.1. Theoretical stress concentration factor (Kt ) for a plate with hole
(of diameter d ) in tension.

d

b
0.05 0.1 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

Kt 2.83 2.69 2.59 2.50 2.43 2.37 2.32 2.26 2.22 2.17 2.13

Fig. for Table 6.1 Fig. for Table 6.2

Table 6.2. Theoretical stress concentration factor (Kt ) for a shaft
with transverse hole (of diameter d ) in bending.

d

D
0.02 0.04 0.08 0.10 0.12 0.16 0.20 0.24 0.28 0.30

Kt 2.70 2.52 2.33 2.26 2.20 2.11 2.03 1.96 1.92 1.90



Variable Stresses in Machine Parts     191

Table 6.3. Theoretical stress concentration factor (Kt ) for stepped
shaft with a shoulder fillet (of radius r ) in tension.

Theoretical stress concentration factor (Kt)

D

d
r/d

0.08 0.10 0.12 0.16 0.18 0.20 0.22 0.24 0.28 0.30

1.01 1.27 1.24 1.21 1.17 1.16 1.15 1.15 1.14 1.13 1.13

1.02 1.38 1.34 1.30 1.26 1.24 1.23 1.22 1.21 1.19 1.19

1.05 1.53 1.46 1.42 1.36 1.34 1.32 1.30 1.28 1.26 1.25

1.10 1.65 1.56 1.50 1.43 1.39 1.37 1.34 1.33 1.30 1.28

1.15 1.73 1.63 1.56 1.46 1.43 1.40 1.37 1.35 1.32 1.31

1.20 1.82 1.68 1.62 1.51 1.47 1.44 1.41 1.38 1.35 1.34

1.50 2.03 1.84 1.80 1.66 1.60 1.56 1.53 1.50 1.46 1.44

2.00 2.14 1.94 1.89 1.74 1.68 1.64 1.59 1.56 1.50 1.47

Table 6.4. Theoretical stress concentration factor (Kt ) for a stepped
shaft with a shoulder fillet (of radius r ) in bending.

Theoretical stress concentration factor (Kt)

D

d
r/d

0.02 0.04 0.08 0.10 0.12 0.16 0.20 0.24 0.28 0.30

1.01 1.85 1.61 1.42 1.36 1.32 1.24 1.20 1.17 1.15 1.14

1.02 1.97 1.72 1.50 1.44 1.40 1.32 1.27 1.23 1.21 1.20

1.05 2.20 1.88 1.60 1.53 1.48 1.40 1.34 1.30 1.27 1.25

1.10 2.36 1.99 1.66 1.58 1.53 1.44 1.38 1.33 1.28 1.27

1.20 2.52 2.10 1.72 1.62 1.56 1.46 1.39 1.34 1.29 1.28

1.50 2.75 2.20 1.78 1.68 1.60 1.50 1.42 1.36 1.31 1.29

2.00 2.86 2.32 1.87 1.74 1.64 1.53 1.43 1.37 1.32 1.30

3.00 3.00 2.45 1.95 1.80 1.69 1.56 1.46 1.38 1.34 1.32

6.00 3.04 2.58 2.04 1.87 1.76 1.60 1.49 1.41 1.35 1.33
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Table 6.5. Theoretical stress concentration factor (Kt) for a stepped shaft
with a shoulder fillet (of radius r) in torsion.

Theoretical stress concentration factor (Kt)

D

d
r/d

0.02 0.04 0.08 0.10 0.12 0.16 0.20 0.24 0.28 0.30

1.09 1.54 1.32 1.19 1.16 1.15 1.12 1.11 1.10 1.09 1.09

1.20 1.98 1.67 1.40 1.33 1.28 1.22 1.18 1.15 1.13 1.13

1.33 2.14 1.79 1.48 1.41 1.35 1.28 1.22 1.19 1.17 1.16

2.00 2.27 1.84 1.53 1.46 1.40 1.32 1.26 1.22 1.19 1.18

Table 6.6. Theoretical stress concentration factor (Kt )
for a grooved shaft in tension.

Theoretical stress concentration (Kt )
D

d
 r/d

0.02 0.04 0.08 0.10 0.12 0.16 0.20 0.24 0.28 0.30

1.01 1.98 1.71 1.47 1.42 1.38 1.33 1.28 1.25 1.23 1.22

1.02 2.30 1.94 1.66 1.59 1.54 1.45 1.40 1.36 1.33 1.31

1.03 2.60 2.14 1.77 1.69 1.63 1.53 1.46 1.41 1.37 1.36

1.05 2.85 2.36 1.94 1.81 1.73 1.61 1.54 1.47 1.43 1.41

1.10 .. 2.70 2.16 2.01 1.90 1.75 1.70 1.57 1.50 1.47

1.20 .. 2.90 2.36 2.17 2.04 1.86 1.74 1.64 1.56 1.54

1.30 .. .. 2.46 2.26 2.11 1.91 1.77 1.67 1.59 1.56

1.50 .. .. 2.54 2.33 2.16 1.94 1.79 1.69 1.61 1.57

2.00 .. .. 2.61 2.38 2.22 1.98 1.83 1.72 1.63 1.59

 ∞ .. .. 2.69 2.44 2.26 2.03 1.86 1.74 1.65 1.61
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 Table 6.7. Theoretical stress concentration factor (Kt ) of
a grooved shaft in bending.

Theoretical stress concentration factor (Kt)

D

d
r/d

0.02 0.04 0.08 0.10 0.12 0.16 0.20 0.24 0.28 0.30

1.01 1.74 1.68 1.47 1.41 1.38 1.32 1.27 1.23 1.22 1.20

1.02 2.28 1.89 1.64 1.53 1.48 1.40 1.34 1.30 1.26 1.25

1.03 2.46 2.04 1.68 1.61 1.55 1.47 1.40 1.35 1.31 1.28

1.05 2.75 2.22 1.80 1.70 1.63 1.53 1.46 1.40 1.35 1.33

1.12 3.20 2.50 1.97 1.83 1.75 1.62 1.52 1.45 1.38 1.34

1.30 3.40 2.70 2.04 1.91 1.82 1.67 1.57 1.48 1.42 1.38

1.50 3.48 2.74 2.11 1.95 1.84 1.69 1.58 1.49 1.43 1.40

2.00 3.55 2.78 2.14 1.97 1.86 1.71 1.59 1.55 1.44 1.41

∞ 3.60 2.85 2.17 1.98 1.88 1.71 1.60 1.51 1.45 1.42

Table 6.8. Theoretical stress concentration factor (Kt ) for a grooved
shaft in torsion.

Theoretical stress concentration factor (Kts)
D

d
r/d

0.02 0.04 0.08 0.10 0.12 0.16 0.20 0.24 0.28 0.30

1.01 1.50 1.03 1.22 1.20 1.18 1.16 1.13 1.12 1.12 1.12

1.02 1.62 1.45 1.31 1.27 1.23 1.20 1.18 1.16 1.15 1.16

1.05 1.88 1.61 1.40 1.35 1.32 1.26 1.22 1.20 1.18 1.17

1.10 2.05 1.73 1.47 1.41 1.37 1.31 1.26 1.24 1.21 1.20

1.20 2.26 1.83 1.53 1.46 1.41 1.34 1.27 1.25 1.22 1.21

1.30 2.32 1.89 1.55 1.48 1.43 1.35 1.30 1.26 — —

2.00 2.40 1.93 1.58 1.50 1.45 1.36 1.31 1.26 — —

∞ 2.50 1.96 1.60 1.51 1.46 1.38 1.32 1.27 1.24 1.23
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Stepped shaft

Example 6.2. Find the maximum
stress induced in the following cases
taking stress concentration into
account:

1. A rectangular plate 60 mm ×
10 mm with a hole 12 diameter as
shown in Fig. 6.13 (a) and subjected
to a tensile load of 12 kN.

2. A stepped shaft as shown in
Fig. 6.13 (b) and carrying a tensile
load of 12 kN.

Fig. 6.13

Solution. Case 1. Given : b = 60 mm ; t = 10 mm ; d = 12 mm ; W = 12 kN = 12 × 103 N
We know that cross-sectional area of the plate,

A = (b – d) t = (60 – 12) 10 = 480 mm2

∴ Nominal stress =
3

212 10
25 N / mm 25 MPa

480

W

A

×= = =

Ratio of diameter of hole to width of plate,
12

0.2
60

d

b
= =

From Table 6.1, we find that for d / b = 0.2, theoretical stress concentration factor,
Kt = 2.5

∴ Maximum stress = Kt × Nominal stress = 2.5 × 25 = 62.5 MPa Ans.
Case 2. Given : D = 50 mm ; d = 25 mm ; r = 5 mm ; W = 12 kN = 12 × 103 N

We know that cross-sectional area for the stepped shaft,

A = 2 2 2(25) 491 mm
4 4

d
π π× = =

∴ Nominal stress =
3

212 10
24.4 N / mm 24.4 MPa

491

W

A

×= = =

Ratio of maximum diameter to minimum diameter,

D/d = 50/25 = 2

Ratio of radius of fillet to minimum diameter,

r/d = 5/25 = 0.2

From Table 6.3, we find that for D/d = 2 and r/d = 0.2, theoretical stress concentration factor,
Kt = 1.64.

∴ Maximum stress = Kt × Nominal stress = 1.64 × 24.4 = 40 MPa Ans.
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6.16 Fatigue Stress Concentration Factor
When a machine member is subjected to cyclic or fatigue loading, the value of fatigue stress

concentration factor shall be applied instead of theoretical stress concentration factor. Since the
determination of fatigue stress concentration factor is not an easy task, therefore from experimental
tests it is defined as

Fatigue stress concentration factor,

Kf =
Endurance limit without stress concentration

Endurance limit with stress concentration

6.17 Notch Sensitivity
In cyclic loading, the effect of the notch or the fillet is usually less than predicted by the use of

the theoretical factors as discussed before. The difference depends upon the stress gradient in the
region of the stress concentration and on the hardness of the material. The term notch sensitivity is
applied to this behaviour. It may be defined as the degree to which the theoretical effect of stress
concentration is actually reached. The stress gradient depends mainly on the radius of the notch, hole
or fillet and on the grain size of the material. Since the extensive data for estimating the notch sensitivity
factor (q) is not available, therefore the curves, as shown in Fig. 6.14, may be used for determining
the values of q for two steels.

Fig. 6.14. Notch sensitivity.

When the notch sensitivity factor q is used in cyclic loading, then fatigue stress concentration
factor may be obtained from the following relations:

q =
– 1

–1
f

t

K

K

or Kf = 1 + q (Kt – 1) ...[For tensile or bending stress]

and Kfs = 1 + q (Kts – 1) ...[For shear stress]
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where Kt = Theoretical stress concentration factor for axial or bending
loading, and

Kts = Theoretical stress concentration factor for torsional or shear
loading.

6.18 Combined Steady and
Variable Stress

The failure points from fatigue
tests made with different steels and
combinations of mean and variable
stresses are plotted in Fig. 6.15 as
functions of variable stress (σv) and
mean stress (σm). The most significant
observation is that, in general, the
failure point is little related to the mean
stress when it is compressive but is very
much a function of the mean stress when
it is tensile. In practice, this means that
fatigue failures are rare when the mean
stress is compressive (or negative).
Therefore, the greater emphasis must be
given to the combination of a variable
stress and a steady (or mean) tensile
stress.

Fig. 6.15. Combined mean and variable stress.

There are several ways in which problems involving this combination of stresses may be solved,
but the following are important from the subject point of view :

1. Gerber method, 2. Goodman method, and 3. Soderberg method.

We shall now discuss these methods, in detail, in the following pages.

Protective colour coatings are added to make components
it corrosion resistant. Corrosion if not taken care can magnify
other stresses.
Note : This picture is given as additional information and is not a

direct example of the current chapter.
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6.19 Gerber Method for
Combination of Stresses

The relationship between variable
stress (σv) and mean stress (σm) for axial and
bending loading for ductile materials are
shown in Fig. 6.15. The point σe represents
the fatigue strength corresponding to the case
of complete reversal (σm = 0) and the point
σu represents the static ultimate strength
corresponding to σv = 0.

A parabolic curve drawn between the
endurance limit (σe) and ultimate tensile
strength (σu) was proposed by Gerber in
1874. Generally, the test data for ductile
material fall closer to Gerber parabola as
shown in Fig. 6.15, but because of scatter in
the test points, a straight line relationship (i.e.
Goodman line and Soderberg line) is usually
preferred in designing machine parts.

According to Gerber, variable stress,

σv = σe 

2
1

. .
. .

m

u

F S
F S

⎡ ⎤σ⎛ ⎞−⎢ ⎥⎜ ⎟σ⎝ ⎠⎢ ⎥⎣ ⎦

or

2
1

. .
. .

m v

u e

F S
F S

σ σ⎛ ⎞= +⎜ ⎟σ σ⎝ ⎠
...(i)

where F.S. = Factor of safety,

σm = Mean stress (tensile or compressive),

σu = Ultimate stress (tensile or compressive), and

σe = Endurance limit for reversal loading.

Considering the fatigue stress
concentration factor (Kf), the equation (i) may
be written as

             

2
1

. .
. .

v fm

u e

K
F S

F S

σ ×σ⎛ ⎞= +⎜ ⎟σ σ⎝ ⎠

6.20 Goodman Method for
Combination of Stresses

A straight line connecting the endurance
limit (σe) and the ultimate strength (σu), as
shown by line AB in Fig. 6.16, follows the
suggestion of Goodman. A Goodman line is
used when the design is based on ultimate
strength and may be used for ductile or brittle
materials.

In Fig. 6.16, line AB connecting σe and

Liquid refrigerant absorbs heat as it vaporizes inside the
evaporator coil of a refrigerator. The heat is released
when a compressor turns the refrigerant back to liquid.

Note : This picture is given as additional information and is
not a direct example of the current chapter.

Fig. 6.16. Goodman method.

Evaporator

Gas flow

Fins radiate heat

Liquid flow

Condenser

Compressor
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* Here we have assumed the same factor of safety (F.S.) for the ultimate tensile strength (σu) and endurance
limit (σe). In case the factor of safety relating to both these stresses is different, then the following relation
may be used :

1
/ ( . .) / ( . .)

σ σ
= −

σ σ
v m

F S F Se e u u
where (F.S.)e = Factor of safety relating to endurance limit, and

(F.S.)u = Factor of safety relating to ultimate tensile strength.

σu is called Goodman's failure stress line. If a suitable factor of safety (F.S.) is applied to endurance
limit and ultimate strength, a safe stress line CD may be drawn parallel to the line AB. Let us consider
a design point P on the line CD.

Now from similar triangles COD and PQD,

       
PQ QD

CO OD
=  

OD OQ

OD

−=  1 –
OQ

OD
= ...(Q  QD = OD – OQ)

∴ 1
/ . . / . .

σ σ
= −

σ σ
v m

e uF S F S

1
1

. . / . . . .
e m m

v e
u uF S F S F S

σ σ σ⎡ ⎤ ⎡ ⎤σ = − = σ −⎢ ⎥ ⎢ ⎥σ σ⎣ ⎦ ⎣ ⎦

or
1

. .
m v

u eF S

σ σ
= +

σ σ
...(i)

This expression does not include the effect of stress concentration. It may be noted that for
ductile materials, the stress concentration may be ignored under steady loads.

Since many machine and structural parts that are subjected to fatigue loads contain regions of
high stress concentration, therefore equation (i) must be altered to include this effect. In such cases,
the fatigue stress concentration factor (Kf) is used to multiply the variable stress (σv). The equation (i)
may now be written as

1

. .
v fm

u e

K

F S

σ ×σ
= +

σ σ
...(ii)

where F.S. = Factor of safety,
σm = Mean stress,
σu = Ultimate stress,
σv = Variable stress,
σe = Endurance limit for reversed loading, and
Kf = Fatigue stress concentration factor.

Considering the load factor, surface finish factor and size factor, the equation (ii) may be
written as

1

. .
v f v fm m

u eb sur sz u e b sur sz

K K

F S K K K K K

σ × σ ×σ σ= + = +
σ σ × × σ σ × × ×

...(iii)

=
v fm

u e sur sz

K

K K

σ ×σ
+

σ σ × × ...(Q  σeb = σe × Kb and Kb = 1)

where Kb = Load factor for reversed bending load,

Ksur = Surface finish factor, and

Ksz = Size factor.

∗
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Notes : 1. The equation (iii) is applicable to ductile materials subjected to reversed bending loads (tensile or
compressive). For brittle materials, the theoretical stress concentration factor (Kt) should be applied to the mean
stress and fatigue stress concentration factor (Kf) to the variable stress. Thus for brittle materials, the equation
(iii) may be written as

1

. .

σ ×σ ×= +
σ σ × ×

v fm t

u eb sur sz

KK

F S K K
...(iv)

2. When a machine component is subjected to a load other than reversed bending, then the endurance
limit for that type of loading should be taken into consideration. Thus for reversed axial loading (tensile or
compressive), the equations (iii) and (iv) may be written as

1

. .

σ ×σ= +
σ σ × ×

v fm

u ea sur sz

K

F S K K
...(For ductile materials)

and
1

. .

σ ×σ ×= +
σ σ × ×

v fm t

u ea sur sz

KK

F S K K
...(For brittle materials)

Similarly, for reversed torsional or shear loading,

1

. .

τ ×τ= +
τ τ × ×

v fsm

u e sur sz

K

F S K K
...(For ductile materials)

and
1

. .
v fsm ts

u e sur sz

KK

F S K K

τ ×τ ×
= +

τ τ × × ...(For brittle materials)

where suffix ‘s’denotes for shear.

For reversed torsional or shear loading, the values of ultimate shear strength (τu) and endurance shear
strength (τe) may be taken as follows:

τu = 0.8 σu; and τe = 0.8 σe

6.21 Soderberg Method for Combination of Stresses
A straight line connecting the endurance limit (σe) and the yield strength (σy), as shown by the

line AB in Fig. 6.17, follows the suggestion of Soderberg line. This line is used when the design is
based on yield strength.

Note : This picture is given as additional information and is not a direct example of the current chapter.

In this central heating system, a furnace burns fuel to heat water in a boiler. A pump forces the hot
water through pipes that connect to radiators in each room. Water from the boiler also heats the hot
water cylinder. Cooled water returns to the boiler.

Overflow pipe
Mains
supply

Hot water
cylinderWater

tank Control
valve

Radiator

Pump

Heat exchanger
Gas burner

Boiler Insulation

Flue

Air inlet
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Proceeding in the same way as discussed
in Art 6.20, the line AB connecting σe and σy, as
shown in Fig. 6.17, is called Soderberg's failure
stress line. If a suitable factor of safety (F.S.) is
applied to the endurance limit and yield strength,
a safe stress line CD may be drawn parallel to
the line AB. Let us consider a design point P on
the line CD. Now from similar triangles COD
and PQD,

          
PQ QD OD OQ

CO OD OD

−= =

        = 1
OQ

OD
−

...(Q  QD = OD – OQ)

∴ 1
/ . . / . .

v m

e yF S F S

σ σ
= −

σ σ

or
1

1
. . / . . . .
e m m

v e
y yF S F S F S

σ σ σ⎡ ⎤ ⎡ ⎤σ = − = σ −⎢ ⎥ ⎢ ⎥σ σ⎣ ⎦ ⎣ ⎦

∴
1

. .
m v

y eF S

σ σ
= +

σ σ
...(i)

For machine parts subjected to fatigue loading, the fatigue stress concentration factor (Kf)
should be applied to only variable stress (σv). Thus the equations (i) may be written as

   
1

. .
v fm

y e

K

F S

σ ×σ
= +

σ σ
...(ii)

Considering the load factor, surface finish factor and size factor, the equation (ii) may be
written as

                                      
1

. .
v fm

y eb sur sz

K

F S K K

σ ×σ
= +

σ σ × ×
...(iii)

Since σeb = σe × Kb and Kb = 1 for reversed bending load, therefore σeb = σe may be substituted
in the above equation.

Notes: 1. The Soderberg method is particularly used for ductile materials. The equation (iii) is applicable to
ductile materials subjected to reversed bending load (tensile or compressive).

2. When a machine component is subjected to reversed axial loading, then the equation (iii) may be
written as

                                          
1

. .

σ ×σ= +
σ σ × ×

v fm

y ea sur sz

K

F S K K

3. When a machine component is subjected to reversed shear loading, then equation (iii) may be
written as

1

. .

τ ×τ= +
τ τ × ×

v fsm

y e sur sz

K

F S K K

where K f s  is the fatigue stress concentration factor for reversed shear loading. The yield strength in shear (τy)
may be taken as one-half the yield strength in reversed bending (σy).

Fig. 6.17. Soderberg method.
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Example 6.3.  A machine component is

subjected to a flexural stress which fluctuates
between + 300 MN/m2 and – 150 MN/m2.
Determine the value of minimum ultimate strength
according to 1. Gerber relation; 2. Modified
Goodman relation; and 3. Soderberg relation.

Take yield strength = 0.55 Ultimate strength;
Endurance strength = 0.5 Ultimate strength; and
factor of safety = 2.

Solution. Given : σ1 = 300 MN/m2 ;
σ2 = – 150 MN/m2 ; σy = 0.55 σu ; σe = 0.5 σu ;
F.S. = 2

Let σu = Minimum ultimate strength  in MN/m2.

We know that the mean or average stress,

21 2 300 ( 150)
75 MN/m

2 2

σ + σ + −σ = = =m

and variable stress, 21 2 300 ( 150)
225 MN/m

2 2v
σ − σ − −σ = = =

1.  According to Gerber relation
We know that according to Gerber relation,

2
1

. .
. .

m v

u e

F S
F S

σ σ⎛ ⎞= +⎜ ⎟σ σ⎝ ⎠
2

2 2

11 250 4501 75 225 11 250 450
2

2 0.5 ( ) ( )

+ σ⎛ ⎞= + = + =⎜ ⎟σ σ σσ σ⎝ ⎠
u

u u uu u

(σu)
2 = 22 500 + 900 σu

or (σu)
2 – 900 σu – 22 500 = 0

∴ σu =
2900 (900) 4 1 22 500 900 948.7

2 1 2

± + × × ±=
×

= 924.35 MN/m2 Ans. ...(Taking +ve sign)

2.  According to modified Goodman relation

We know that according to modified Goodman relation,

1

. .
m v

u eF S

σ σ
= +

σ σ

or
1 75 225 525

2 0.5u u u

= + =
σ σ σ

∴ σu = 2 × 525 = 1050 MN/m2 Ans.

3.  According to Soderberg relation

We know that according to Soderberg relation,
1

. .
m v

y eF S

σ σ
= +

σ σ

or
1 75 255 586.36

2 0.55 0.5u u u

= + =
σ σ σ

∴ σu = 2 × 586.36 = 1172.72 MN/m2 Ans.

Springs often undergo variable stresses.
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Example 6.4. A bar of circular cross-section is subjected to alternating tensile forces varying
from a minimum of 200 kN to a maximum of 500 kN. It is to be manufactured of a material with an
ultimate tensile strength of 900 MPa and an endurance limit of 700 MPa. Determine the diameter of
bar using safety factors of 3.5 related to ultimate tensile strength and 4 related to endurance limit
and a stress concentration factor of 1.65 for fatigue load. Use Goodman straight line as basis for
design.

Solution. Given : Wmin = 200 kN ; Wmax = 500 kN ; σu = 900 MPa = 900 N/mm2 ; σe = 700 MPa
= 700 N/mm2 ; (F.S.)u = 3.5 ; (F.S.)e = 4 ; Kf = 1.65

Let d = Diameter of bar in mm.

∴ Area, A = 2 2 20.7854 mm
4

d d
π × =

We know that mean or average force,

Wm = 3500 200
350 kN 350 10 N

2 2
max minW W+ += = = ×

∴ Mean stress, σm =
3 3

2
2 2

350 10 446 10
N / mm

0.7854

× ×= =mW

A d d

Variable force, Wv = 3500 200
150 kN 150 10 N

2 2
max minW W− −= = = ×

∴ Variable stress, σv =
3 3

2
2 2

150 10 191 10
N / mm

0.7854
vW

A d d

× ×= =

We know that according to Goodman's formula,

.
1 –

/ ( . .) / ( . .)
m fv

e e u u

K

F S F S

σσ
=

σ σ
3 3

2 2

191 10 446 10
1.65

1
700 / 4 900 / 3.5

d d

× × ×
= −

Paint Manufacture : A typical gloss paint is made by first mixing
natural oils and resins called alkyds. Thinner is added to make
the mixture easier to pump through a filter that removes any
solid particles from the blended liquids. Pigment is mixed into
the binder blend in a powerful mixer called a disperser.

Pigment and paint thin-
ner added

Final adjustments madeFilter tank
Setting tank

Mixing
tank

Thinner
 added

Oil and resin
blended
together

Disperser Bead mill Holding tank

Note : This picture is given as additional information and is not a direct example of the current chapter.
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2 2

1100 2860
1

d d
= − or 2

1100 2860
1

d

+ =

∴ d 2 = 3960   or   d = 62.9 say 63 mm  Ans.
Example 6.5. Determine the thickness of a 120 mm wide uniform plate for safe continuous

operation if the plate is to be subjected to a tensile load that has a maximum value of 250 kN and a
minimum value of 100 kN. The properties of the plate material are as follows:

Endurance limit stress = 225 MPa, and Yield point stress = 300 MPa.

The factor of safety based on yield point may be taken as 1.5.

Solution. Given : b = 120 mm ; Wmax = 250 kN; Wmin = 100 kN ; σe = 225 MPa = 225 N/mm2 ;
σy = 300 MPa = 300 N/mm2; F.S. = 1.5

Let t = Thickness of the plate in mm.

∴ Area, A = b × t = 120 t mm2

We know that mean or average load,

Wm = 3250 100
175 kN = 175 × 10 N

2 2
max minW W+ += =

∴ Mean stress, σm =
3

2175 10
N/mm

120
mW

A t

×=

Variable load, Wv = 3250 100
75 kN 75 10 N

2 2
max minW W− −= = = ×

∴ Variable stress, σv =
3

275 10
N/mm

120
vW

A t

×=

According to Soderberg’s formula,
1

. .
m v

y eF S

σ σ
= +

σ σ
3 31 175 10 75 10 4.86 2.78 7.64

1.5 120 300 120 225t t t t t

× ×= + = + =
× ×

∴ t = 7.64 × 1.5 = 11.46 say 11.5 mm Ans.
Example 6.6. Determine the diameter of a circular rod made of ductile material with a fatigue

strength (complete stress reversal), σe = 265 MPa and a tensile yield strength of 350 MPa. The
member is subjected to a varying axial load from Wmin = – 300 × 103 N to Wmax = 700 × 103 N and
has a stress concentration factor = 1.8. Use factor of safety as 2.0.

Solution. Given : σe = 265 MPa = 265 N/mm2 ; σy = 350 MPa = 350 N/mm2 ; Wmin = – 300 × 103 N ;
Wmax = 700 × 103 N ; Kf = 1.8 ; F.S. = 2

Let d = Diameter of the circular rod in mm.

∴ Area, A = 2 2 20.7854 mm
4

d d
π × =

We know that the mean or average load,

Wm =
3 3

3700 10 ( 300 10 )
200 10 N

2 2
max minW W+ × + − ×= = ×

∴ Mean stress, σm =
3 3

2
2 2

200 10 254.6 10
N/mm

0.7854
mW

A d d

× ×= =



204    A Textbook of Machine Design

Variable load,       Wv =
3 3

3700 10 ( 300 10 )
500 10 N

2 2
max minW W− × − − ×= = ×

∴ Variable stress, σv =
3 3

2
2 2

500 10 636.5 10
N/mm

0.7854
vW

A d d

× ×= =

We know that according to Soderberg's formula,

1

. .
v fm

y e

K

F S

σ ×σ
= +

σ σ
3 3

2 2 2 2 2

1 254.6 10 636.5 10 1.8 727 4323 5050

2 350 265d d d d d

× × ×= + = + =
× ×

∴ d 2 = 5050 × 2 = 10 100   or   d = 100.5 mm Ans.
Example 6.7. A steel rod is subjected to a reversed axial load of 180 kN. Find the diameter of

the rod for a factor of safety of 2. Neglect column action. The material has an ultimate tensile
strength of 1070 MPa and yield strength of 910 MPa. The endurance limit in reversed bending
may be assumed to be one-half of the ultimate tensile strength. Other correction factors may be
taken as follows:

For axial loading = 0.7; For machined surface = 0.8 ; For size = 0.85 ; For stress
concentration = 1.0.

Solution. Given : Wmax = 180 kN ; Wmin = – 180 kN ; F.S. = 2 ; σu = 1070 MPa = 1070
N/mm2; σy = 910 MPa = 910 N/mm2 ; σe = 0.5 σu ; Ka = 0.7 ; Ksur = 0.8 ; Ksz = 0.85 ; Kf = 1

Let d = Diameter of the rod in mm.

∴ Area, A = 2 2 20.7854 mm
4

d d
π × =

We know that the mean or average load,

Wm =
180 ( 180)

0
2 2

max minW W+ + −= =

∴ Mean stress, σm = 0mW

A
=

Variable load, Wv = 3180 ( 180)
180 kN 180 10 N

2 2
max minW W− − −= = = ×

∴Variable stress, σv =
3 3

2
2 2

180 10 229 10
N/mm

0.7854
vW

A d d

× ×= =

Endurance limit in reversed axial loading,

σea = σe × Ka = 0.5 σu × 0.7 = 0.35 σu ...(Q  σe = 0.5 σu)

= 0.35 × 1070 = 374.5 N/mm2

We know that according to Soderberg's formula for reversed axial loading,

1

. .
v fm

y ea sur sz

K

F S K K

σ ×σ
= +

σ σ × ×
3

2 2

1 229 10 1 900
0

2 374.5 0.8 0.85d d

× ×= + =
× × ×

∴ d 2 = 900 × 2 = 1800  or  d = 42.4 mm Ans.
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Example 6.8. A circular bar of 500 mm length is supported freely at its two ends. It is acted
upon by a central concentrated cyclic load having a minimum value of 20 kN and a maximum value
of 50 kN. Determine the diameter of bar by taking a factor of safety of 1.5, size effect of 0.85, surface
finish factor of 0.9. The material properties of bar are given by : ultimate strength of 650 MPa, yield
strength of 500 MPa and endurance strength of 350 MPa.

Solution. Given : l = 500 mm ; Wmin = 20 kN = 20 × 103 N ; Wmax = 50 kN = 50 × 103 N ;
F.S. = 1.5 ; Ksz = 0.85 ; Ksur = 0.9 ; σu = 650 MPa = 650 N/mm2 ; σy = 500 MPa = 500 N/mm2 ;
σe = 350 MPa = 350 N/mm2

Let d = Diameter of the bar in mm.

We know that the maximum bending moment,

Mmax =
3

350 10 500
6250 10 N-mm

4 4
maxW l× × ×= = ×

and minimum bending moment,

Mmin =
3

320 10 500
2550 10 N -mm

4 4
minW l× × ×= = ×

∴ Mean or average bending moment,

Mm =
3 3

36250 10 2500 10
4375 10 N-mm

2 2
max minM M+ × + ×= = ×

and variable bending moment,

Mv =
3 3

36250 10 2500 10
1875 10 N -mm

2 2
max minM M− × − ×= = ×

Section modulus of the bar,

Z =
3 3 30.0982 mm

32
d d

π × =

∴ Mean or average bending stress,

σm =
3 6

2
3 3

4375 10 44.5 10
N/mm

0.0982
mM

Z d d

× ×= =

Layout of a military tank.

Note : This picture is given as additional information and is not a direct example of the current chapter.
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and variable bending stress,

                              σv = 
3 6

2
3 3

1875 10 19.1 10
N/mm

0.0982
vM

Z d d

× ×= =

We know that according to Goodman's formula,

                         
1

. .
v fm

u e sur sz

K

F S K K

σ ×σ= +
σ σ × ×

                           
6 6

3 3

1 44.5 10 19.1 10 1

1.5 650 350 0.9 0.85

× × ×= +
× × × ×d d

...(Taking Kf = 1)

                                  =
3 3 3

3 3 3

68 10 71 10 139 10

d d d

× × ×+ =

∴                       d 3 = 139 × 103 × 1.5 = 209 × 103   or   d = 59.3 mm

and according to Soderberg's formula,

                         
1

. .
v fm

y e sur sz

K

F S K K

σ ×σ
= +

σ σ × ×

                            
6 6

3 3

1 44.5 10 19.1 10 1

1.5 500 350 0.9 0.85

× × ×= +
× × × ×d d

...(Taking Kf = 1)

                                  =
3 3 3

3 3 3

89 10 71 10 160 10

d d d

× × ×+ =

∴                        d 3 = 160 × 103 × 1.5 = 240 × 103     or    d = 62.1 mm

Taking larger of the two values, we have d = 62.1 mm Ans.
Example 6.9.  A 50 mm diameter shaft is made from carbon steel having ultimate tensile

strength of 630 MPa. It is subjected to a torque which fluctuates between 2000 N-m to – 800 N-m.
Using Soderberg method, calculate the factor of safety. Assume suitable values for any other data
needed.

Solution. Given : d = 50 mm ; σu = 630 MPa = 630 N/mm2 ; Tmax = 2000 N-m ; Tmin = – 800 N-m
We know that the mean or average torque,

Tm =  32000 ( 800)
600 N-m 600 10 N-mm

2 2
max minT T+ + −= = = ×

∴  Mean or average shear stress,

τm =  
3

2
3 3

16 16 600 10
24.4 N / mm

(50)

× ×= =
π π

mT

d
... 3

16

π⎛ ⎞= × τ ×⎜ ⎟
⎝ ⎠
Q T d

Variable torque,

Tv = 32000 ( 800)
1400 N-m 1400 10 N-mm

2 2
max minT T− − −= = = ×

∴ Variable shear stress, τv = 
3

2
3 3

16 16 1400 10
57 N/mm

(50)
vT

d

× ×= =
π π

Since the endurance limit in reversed bending (σe) is taken as one-half the ultimate tensile
strength (i.e. σe = 0.5 σu) and the endurance limit in shear (τe) is taken as 0.55 σe, therefore

τe = 0.55 σe = 0.55 × 0.5 σu = 0.275 σu

= 0.275 × 630 = 173.25 N/mm2

Assume the yield stress (σy) for carbon steel in reversed bending as 510 N/mm2, surface finish

factor (Ksur) as 0.87, size factor (Ksz) as 0.85 and fatigue stress concentration factor (Kfs) as 1.
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Since the yield stress in shear (τy) for shear loading is taken as one-half the yield stress in
reversed bending (σy), therefore

τy = 0.5 σy = 0.5 × 510 = 255 N/mm2

Let F.S. = Factor of safety.

We know that according to Soderberg's formula,

1 24.4 57 1

. . 255 173.25 0.87 0.85
v fsm

y e sur sz

K

F S K K

τ ×τ ×= + = +
τ τ × × × ×

= 0.096 + 0.445 = 0.541

∴ F.S. = 1 / 0.541 = 1.85  Ans.
Example 6.10. A cantilever beam made of cold drawn carbon steel of circular cross-section as

shown in Fig. 6.18, is subjected to a load which varies
from – F to 3 F. Determine the maximum load that this
member can withstand for an indefinite life using a factor
of safety as 2. The theoretical stress concentration factor
is 1.42 and the notch sensitivity is 0.9. Assume the
following values :

Ultimate stress = 550 MPa

Yield stress = 470 MPa

Endurance limit = 275 MPa

Size factor = 0.85

Surface finish factor = 0.89

Solution. Given : Wmin = – F ; Wmax = 3 F ; F.S. = 2 ; Kt = 1.42 ; q = 0.9 ; σu = 550 MPa
= 550 N/mm2 ; σy = 470 MPa = 470 N/mm2 ; σe = 275 MPa = 275 N/mm2 ; Ksz = 0.85 ; Ksur = 0.89

Fig. 6.18

Note : This picture is given as additional information and is not a direct example of the current chapter.

Army  Tank

All dimensions in mm.
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The beam as shown in Fig. 6.18 is subjected to a reversed bending load only. Since the point A
at the change of cross section is critical, therefore we shall find the bending moment at point A.

We know that maximum bending moment at point A,

Mmax = Wmax × 125 = 3F × 125 = 375 F N-mm
and minimum bending moment at point A,

Mmin = Wmin × 125 = – F × 125 = – 125 F N-mm
∴ Mean or average bending moment,

Mm =
375 ( 125 )

125 N -mm
2 2

max minM M F F
F

+ + −= =

and variable bending moment,

Mv =
375 ( 125 )

250 N -mm
2 2

max minM M F F
F

− − −= =

Section modulus, Z =
3 3 3(13) 215.7 mm

32 32
d

π π× = = ...( Q  d = 13 mm)

∴   Mean bending stress, σm = 2125
0.58 N/mm

215.7
mM F

F
Z

= =

and variable bending stress, σv = 2250
1.16 N/mm

215.7
vM F

F
Z

= =

Fatigue stress concentration factor,Kf = 1 + q (Kt – 1) = 1 + 0.9 (1.42 – 1) = 1.378

We know that according to Goodman’s formula

1

. .
v fm

u e sur sz

K

F S K K

σ ×σ
= +

σ σ × ×
1 0.58 1.16 1.378

2 550 275 0.89 0.85

F F ×= +
× ×

= 0.001 05 F + 0.007 68 F = 0.008 73 F

∴ F =
1

57.3 N
2 0.00873

=
×

and according to Soderberg’s formula,

1

. .
v fm

y e sur sz

K

F S K K

σ ×σ
= +

σ σ × ×
1 0.58 1.16 1.378

2 470 275 0.89 0.85

F F ×= +
× ×

= 0.001 23 F + 0.007 68 F = 0.008 91 F

∴ F =
1

56 N
2 0.008 91

=
×

Taking larger of the two values, we have F = 57.3 N Ans.
Example 6.11. A simply supported beam has a concentrated load at the centre which fluctuates

from a value of P to 4 P. The span of the beam is 500 mm and its cross-section is circular with a
diameter of 60 mm. Taking for the beam material an ultimate stress of 700 MPa, a yield stress of 500
MPa, endurance limit of 330 MPa for reversed bending, and a factor of safety of 1.3, calculate the
maximum value of P. Take a size factor of 0.85 and a surface finish factor of 0.9.

Solution. Given : Wmin = P ; Wmax = 4P ; L = 500 mm; d = 60 mm ; σu = 700 MPa = 700 N/mm2 ;

σy = 500 MPa = 500 N/mm2 ; σe = 330 MPa = 330 N/mm2 ; F.S. = 1.3 ; Ksz = 0.85 ; Ksur = 0.9
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We know that maximum bending moment,

Mmax =
4 500

500 N-mm
4 4

maxW L P
P

× ×= =

and minimum bending moment,

Mmin =  
500

125 N-mm
4 4

minW L P
P

× ×= =

∴ Mean or average bending moment,

Mm =
500 125

312.5 N-mm
2 2

max minM M P P
P

+ += =

and variable bending moment,

Mv =
500 125

187.5 N-mm
2 2

max minM M P P
P

− −= =

Section modulus, Z =
3 3 3 3(60) 21.21 10 mm

32 32
d

π π× = = ×

∴   Mean bending stress,

σm =
2

3

312.5
0.0147 N/mm

21.21 10
mM P

P
Z

= =
×

and variable bending stress,

σv =
2

3

187.5
0.0088 N/mm

21.21 10
vM P

P
Z

= =
×

We know that according to Goodman’s formula,

1

. .
v fm

u e sur sz

K

F S K K

σ ×σ
= +

σ σ × ×
1 0.0147 0.0088 1

1.3 700 330 0.9 0.85

P P ×= +
× ×

...(Taking Kf = 1)

= 6 6 6

21 34.8 55.8

10 10 10

P P P+ =

∴ P =
61 10

13 785 N 13.785 kN
1.3 55.8

× = =

and according to Soderberg's formula,

1

. .
v fm

y e sur sz

K

F S K K

σ ×σ
= +

σ σ × ×

6 6 6

1 0.0147 0.0088 1 29.4 34.8 64.2

1.3 500 330 0.9 0.85 10 10 10

P P P P P×= + = + =
× ×

∴ P =
61 10

11 982 N 11.982 kN
1.3 64.2

× = =

From the above, we find that maximum value of P = 13.785 kN Ans.

6.22 Combined Variable Normal Stress and Variable Shear Stress
When a machine part is subjected to both variable normal stress and a variable shear stress; then

it is designed by using the following two theories of combined stresses :

1. Maximum shear stress theory, and 2. Maximum normal stress theory.
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We have discussed in Art. 6.21, that according to Soderberg's formula,

1

. .
v fbm

y eb sur sz

K

F S K K

σ ×σ
= +

σ σ × ×
...(For reversed bending load)

Multiplying throughout by σy, we get

. .
y v y fb

m
eb sur sz

K

F S K K

σ σ × σ ×
= σ +

σ × ×
The term on the right hand side of the above expression is known as equivalent normal stress

due to reversed bending.

∴ Equivalent normal stress due to reversed bending,
v y fb

neb m
eb sur sz

K

K K

σ × σ ×
σ = σ +

σ × ×
...(i)

Similarly, equivalent normal stress due to reversed axial loading,
v y fa

nea m
ea sur sz

K

K K

σ × σ ×
σ = σ +

σ × ×
. ..(ii)

and total equivalent normal stress,

σne = σneb + σnea = 
. .
y

F S

σ
...(iii)

We have also discussed in Art. 6.21, that for reversed torsional or shear loading,

1

. .
v fsm

y e sur sz

K

F S K K

τ ×τ
= +

τ τ × ×
Multiplying throughout by τy, we get

. .
y v y fs

m
e sur sz

K

F S K K

τ τ × τ ×
= τ +

τ × ×
The term on the right hand side of the above expression is known as equivalent shear stress.
∴  Equivalent shear stress due to reversed torsional or shear loading,

v y fs
es m

e sur sz

K

K K

τ × τ ×
τ = τ +

τ × ×
...(iv)

The maximum shear stress theory is used in designing machine parts of ductile materials.
According to this theory, maximum equivalent shear stress,

τes(max) =
2 21

( ) 4 ( )
2 . .

y
ne es F S

τ
σ + τ =

The maximum normal stress theory is used in designing machine parts of brittle materials.
According to this theory, maximum equivalent normal stress,

σne(max) =
2 21 1

( ) ( ) 4 ( )
2 2 . .

σ
σ + σ + τ = y

ne ne es F S
Example 6.12. A steel cantilever is 200 mm long. It is subjected to an axial load which varies

from 150 N (compression) to 450 N (tension) and also a transverse load at its free end which varies
from 80 N up to 120 N down. The cantilever is of circular cross-section. It is of diameter 2d for the
first 50 mm and of diameter d for the remaining length. Determine its diameter taking a factor of
safety of 2. Assume the following values :

Yield stress =  330 MPa
Endurance limit in reversed loading =  300 MPa
Correction factors =  0.7 in reversed axial loading

=  1.0 in reversed bending
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Stress concentration factor = 1.44 for bending

= 1.64 for axial loading

Size effect factor = 0.85

Surface effect factor = 0.90

Notch sensitivity index = 0.90

Solution. Given : l = 200 mm; Wa(max) = 450 N; Wa(min) = – 150 N ; Wt(max) = 120 N ;
Wt(min) = – 80 N; F.S. =2 ; σy = 330 MPa = 330 N/mm2 ; σe = 300 MPa = 300 N/mm2 ;

Ka = 0.7; Kb = 1; Ktb = 1.44 ; Kta = 1.64; Ksz = 0.85 ; Ksur = 0.90 ; q = 0.90

First of all, let us find the equiva-
lent normal stress for point A which is
critical as shown in Fig. 6.19. It is assumed
that the equivalent normal stress at this
point will be the algebraic sum of the
equivalent normal stress due to axial load-
ing and equivalent normal stress due to
bending (i.e. due to transverse load act-
ing at the free end).

Let us first consider the reversed
axial loading. We know that mean or
average axial load,

Wm =
( ) ( ) 450 ( 150)

150 N
2 2

a max a minW W+ + −= =

and variable axial load,

Wv =
( ) ( ) 450 ( 150)

300 N
2 2

a max a minW W− − −
= =

∴ Mean or average axial stress,

σm =
2

2 2

150 4 191
N/mmmW

A d d

×= =
π

... 2

4

π⎛ ⎞= ×⎜ ⎟
⎝ ⎠
Q A d

and variable axial stress,

σv =
2

2 2

300 4 382
N/mmvW

A d d

×= =
π

We know that fatigue stress concentration factor for reversed axial loading,

Kfa = 1 + q (Kta – 1) = 1 + 0.9 (1.64 – 1) = 1.576

and endurance limit stress for reversed axial loading,

σea = σe × Ka = 300 × 0.7 = 210 N/mm2

We know that equivalent normal stress at point A due to axial loading,

σnea = σm + 2 2

191 382 330 1.576

210 0.9 0.85

v y fa

ea sur sz

K

K K d d

σ × σ × × ×= +
σ × × × × ×

= 2
2 2 2

191 1237 1428
N/mm

d d d
+ =

Fig. 6.19
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Now let us consider the reversed bending due to
transverse load. We know that mean or average bend-
ing load,

Wm =  
( ) ( )

2

+t max t minW W

120 ( 80)
20 N

2

+ −= =

and variable bending load,

Wv =
( ) ( )

2

−t max t minW W

                                
120 ( 80)

100 N
2

− −= =

∴ Mean bending moment at point A,

Mm = Wm (l – 50) = 20 (200 – 50) = 3000 N-mm

and variable bending moment at point A,

Mv = Wv (l – 50) = 100 (200 – 50) = 15 000 N-mm

We know that section modulus,

Z =
3 3 30.0982 mm

32
d d

π × =

∴ Mean or average bending stress,

σm =
2

3 3

3000 30 550
N/mm

0.0982
= =mM

Z d d
and variable bending stress,

σv = 2
3 3

15 000 152 750
N/mm

0.0982
= =vM

Z d d
We know that fatigue stress concentration factor for reversed bending,

Kfb = 1 + q (Ktb – 1) = 1 + 0.9 (1.44 – 1) = 1.396

Since the correction factor for reversed bending load is 1 (i.e. Kb = 1), therefore the endurance
limit for reversed bending load,

σeb = σe . Kb = σe = 300 N/mm2

We know that the equivalent normal stress at point A due to bending,

σneb = σm 
3 3

30 550 152 750 330 1.396

300 0.9 0.85

v y fb

eb sur sz

K

K K d d

σ × σ × × ×+ = +
σ × × × × ×

= 2
3 3 3

30 550 306 618 337 168
N/mm

d d d
+ =

∴ Total equivalent normal stress at point A,

σne = σneb + σnea 
2

3 2

337 168 1428
N/mm

d d
= + ...(i)

Machine transporter
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We know that equivalent normal stress at point A,

σne =
2330

165 N/mm
. . 2
y

F S

σ
= = ...(ii)

Equating equations (i) and (ii), we have

3
3 2

337 168 1428
165 or 337 168 + 1428 165+ = =d d

d d
∴ 236.1 + d = 0.116 d3 or d = 12.9 mm   Ans. ...(By hit and trial)

Example 6.13. A hot rolled steel shaft is subjected to a torsional moment that varies from
330 N-m clockwise to 110 N-m counterclockwise and an applied bending moment at a critical section
varies from 440 N-m to – 220 N-m. The shaft is of uniform cross-section and no keyway is present at
the critical section. Determine the required shaft diameter. The material has an ultimate strength of
550 MN/m2 and a yield strength of 410 MN/m2. Take the endurance limit as half the ultimate strength,
factor of safety of 2, size factor of 0.85 and a surface finish factor of 0.62.

Solution. Given : Tmax = 330 N-m (clockwise) ; Tmin = 110 N-m (counterclockwise) = – 110 N-m
(clockwise) ; Mmax = 440 N-m ; Mmin = – 220 N-m ; σu = 550 MN/m2 = 550 × 106 N/m2 ;

σy = 410 MN/m2 = 410 × 106 N/m2 ; σe = 
1

2
σu = 275 × 106 N/m2 ; F.S. = 2 ; Ksz = 0.85 ; Ksur = 0.62

Let d = Required shaft diameter in metres.

We know that mean torque,

Tm =
330 ( 110)

110 N-m
2 2

max minT T+ + −= =

and variable torque, Tv =
330 ( 110)

220 N-m
2 2

max minT T− − −= =

∴ Mean shear stress,

τm =
2

3 3 3

16 16 110 560
N/m

×= =
π π

mT

d d d
and variable shear stress,

τv =
2

3 3 3

16 16 220 1120
N/mvT

d d d

×= =
π π

Since the endurance limit in shear (τe) is 0.55 σe, and yield strength in shear (τy) is 0.5 σy,
therefore

τe = 0.55 × 275 × 106 = 151.25 × 106 N/m2

and τy = 0.5 × 410 × 106 = 205 × 106 N/m2

We know that equivalent shear stress,

τes = τm + 
v y fs

e sur sz

K

K K

τ × τ
τ × ×

=  
6

3 3 6

560 1120 205 10 1

151.25 10 0.62 0.85d d

× × ×+
× × × ×

...(Taking Kfs = 1)

= 2
3 3 3

560 2880 3440
N/m

d d d
+ =

Mean or average bending moment,

Mm =
440 ( 220)

110 N-m
2 2

max minM M+ + −= =
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and variable bending moment,

                            Mv =
– 440 ( 220)

330 N-m
2 2

max minM M − −= =

Section modulus,  Z = 3 3 30.0982 m
32

d d
π × =

∴ Mean bending stress,

                             σm =
2

3 3

110 1120
N/m

0.0982
mM

Z d d
= =

and variable bending stress,

                              σv =
2

3 3

330 3360
N/m

0.0982
vM

Z d d
= =

Since there is no reversed axial loading, therefore the
equivalent normal stress due to reversed bending load,

                  σneb = σne = σm + v y fb

eb sur sz

K

K K

σ × σ ×
σ × ×

= 
6

3 3 6

1120 3360 410 10 1

275 10 0.62 0.85d d

× × ×+
× × × ×

         ...(Taking Kfb = 1 and σeb = σe)

= 
2

3 3 3

1120 9506 10626
N/m

d d d
+ =

We know that the maximum equivalent shear stress,

τes(max) = 2 21
( ) 4 ( )

. . 2
y

ne esF S

τ
= σ + τ

2 26

3 3

205 10 1 10 625 3440
4

2 2

× ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠d d

205 × 106 × d 3 = 6 6 3113 10 4 11.84 10 12.66 10× + × × = ×

∴ d 3 =
3

6 3

12.66 10 0.0617

205 10 10

× =
×

or d =
0.395

0.0395 m 39.5 say 40 mm
10

= = Ans.

Example 6.14. A pulley is keyed to a shaft midway between two bearings. The shaft is made of
cold drawn steel for which the ultimate strength is 550 MPa and the yield strength is 400 MPa. The
bending moment at the pulley varies from – 150 N-m to + 400 N-m as the torque on the shaft varies
from – 50 N-m to + 150 N-m. Obtain the diameter of the shaft for an indefinite life. The stress
concentration factors for the keyway at the pulley in bending and in torsion are 1.6 and 1.3 respectively.
Take the following values:

Factor of safety =  1.5
Load correction factors =  1.0 in bending, and 0.6 in torsion
Size effect factor =  0.85

Surface effect factor =  0.88

Machine parts are often made
of alloys to improve their
mechanical properties.
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Solution. Given : σu = 550 MPa = 550 N/mm2 ; σy = 400 MPa = 400 N/mm2 ;

Mmin = – 150 N-m; Mmax = 400 N-m ; Tmin = – 50 N-m ; Tmax = 150 N-m ; Kfb = 1.6 ; Kfs = 1.3 ;
F.S. = 1.5 ; Kb = 1 ; Ks = 0.6 ; Ksz = 0.85 ; Ksur = 0.88

Let d = Diameter of the shaft in mm.

First of all, let us find the equivalent normal stress due to bending.

We know that the mean or average bending moment,

Mm = 3400 ( 150)
125 N-m 125 10 N-mm

2 2
max minM M+ + −= = = ×

and variable bending moment,

Mv = 3400 ( 150)
275 N-m 275 10 N-mm

2 2
max minM M− − −= = = ×

Section modulus, Z =
3 3 30.0982 mm

32
d d

π × =

∴ Mean bending stress,

                              σm= 
3 3

2
3 3

125 10 1273 10
N/mm

0.0982

× ×= =mM

Z d d
and variable bending stress,

          σv = 
3 3

2
3 3

275 10 2800 10
N/mm

0.0982

× ×= =vM

Z d d
Assuming the endurance limit in reversed bending as one-half the ultimate strength and since

the load correction factor for reversed bending is 1 (i.e. Kb = 1), therefore endurance limit in reversed
bending,

σeb = σe = 2550
275 N/mm

2 2
uσ

= =

Since there is no reversed axial loading, therefore equivalent normal stress due to bending,

σneb = σne = σm + 
v y fb

eb sur sz

K

K K

σ × σ ×
σ × ×

=
3 3

3 3

1273 10 2800 10 400 1.6

275 0.88 0.85d d

× × × ×+
× × ×

=
3 3 3

2
3 3 3

1273 10 8712 10 9985 10
N/mm

d d d

× × ×+ =

Now let us find the equivalent shear stress due to torsional moment. We know that the mean
torque,

Tm = 3150 ( 50)
50 N-m 50 10 N-mm

2 2
max minT T+ + −= = = ×

and variable torque,      Tv = 3150 ( 50)
100 N-m 100 10 N-mm

2 2
max minT T− − −= = = ×

∴  Mean shear stress,

τm =
3 3

2
3 3 3

16 16 50 10 255 10
N/mmmT

d d d

× × ×= =
π π
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and variable shear stress,

τv =
3 3

2
3 3 3

16 16 100 10 510 10
N/mmvT

d d d

× × ×= =
π π

Endurance limit stress for reversed torsional or shear loading,
τe = σe × Ks = 275 × 0.6 = 165 N/mm2

Assuming yield strength in shear,
τy = 0.5 σy = 0.5 × 400 = 200 N/mm2

We know that equivalent shear stress,

τes = τm + 
v y fs

e sur sz

K

K K

τ × τ ×
τ × ×

=
3 3

3 3

255 10 510 10 200 1.3

165 0.88 0.85d d

× × × ×+
× × ×

=
3 3 3

2
3 3 3

255 10 1074 10 1329 10
N/mm

d d d

× × ×+ =
and maximum equivalent shear stress,

τes(max) = 2 21
( ) 4 ( )

. . 2
y

ne esF S

τ
= σ + τ

2 23 3 3

3 3 3

200 1 9985 10 1329 10 5165 10
4

1.5 2 d d d

⎛ ⎞ ⎛ ⎞× × ×= + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∴ d 3 =
35165 10 1.5

38 740 or 33.84 say 35 mm
200

d
× × = =  Ans.

6.23 Application of Soderberg’s Equation
We have seen in Art. 6.21 that according to Soderberg's equation,

1

. .
v fm

y e

K

F S

σ ×σ
= +

σ σ
...(i)

This equation may also be written as

      
1

. .
m e v y f

y e

K

F S

σ × σ + σ × σ ×
=

σ × σ

or F.S. =
y e y

ym e v y f
m f v

e

K
K

σ × σ σ
=

σσ × σ + σ × σ × ⎛ ⎞
σ + × σ⎜ ⎟σ⎝ ⎠

...(ii)

Since the factor of safety based on yield strength is the ratio of the yield point stress to the
working or design stress, therefore from equation (ii), we may write

Working or design stress

= σm +  
y

f v
e

K
σ⎛ ⎞

× σ⎜ ⎟σ⎝ ⎠
...(iii)

Let us now consider the use of Soderberg's equation to a ductile material under the following
loading conditions.

1.  Axial loading
In case of axial loading, we know that the mean or average stress,

σm = Wm / A
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and variable stress, σv = Wv  / A

where Wm = Mean or average load,

Wv = Variable load, and

A = Cross-sectional area.

The equation (iii) may now be written as follows :

Working or design stress,

=

y
m f v

y em v
f

e

W K W
W W

K
A A A

σ⎛ ⎞
+ ×⎜ ⎟σ σ⎛ ⎞ ⎝ ⎠+ × =⎜ ⎟σ⎝ ⎠

∴ F.S. =
y

y
m f v

e

A

W K W

σ ×
σ⎛ ⎞

+ ×⎜ ⎟σ⎝ ⎠
2.  Simple bending

In case of simple bending, we know that the
bending stress,

σb =
.M y M

I Z
= ...

⎛ ⎞=⎜ ⎟
⎝ ⎠
Q

I
Z

y

∴ Mean or average bending stress,

σm =  Mm / Z

and variable bending stress,

σv =  Mv/ Z

where Mm = Mean bending moment,

Mv = Variable bending moment,
 and

Z = Section modulus.

The equation (iii) may now be written as
follows :

Working or design bending stress,

σb =
σ⎛ ⎞

+ ×⎜ ⎟σ⎝ ⎠

ym v
f

e

M M
K

Z Z

σ⎛ ⎞
+ ×⎜ ⎟σ⎝ ⎠=

y
m f v

e

M K M

Z

= 3

32 ⎡ σ ⎤⎛ ⎞
+ ×⎢ ⎥⎜ ⎟σπ ⎢ ⎥⎝ ⎠⎣ ⎦

y
m f v

e

M K M
d

... 3For circular shafts,
32

π⎛ ⎞= ×⎜ ⎟
⎝ ⎠
Q Z d

∴ F.S. =

3

32

y

y
m f v

e

M K M
d

σ

⎡ σ ⎤⎛ ⎞
+ ×⎢ ⎥⎜ ⎟σπ ⎝ ⎠⎣ ⎦

Note : This picture is given as additional information
and is not a direct example of the current chapter.

A large disc- shaped electromagnet hangs from
jib of this scrapyard crane. Steel and iron objects
fly towards the magnet when the current is
switched on. In this way, iron and steel can be
separated for recycling.
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3. Simple torsion of circular shafts
In case of simple torsion, we know that the torque,

T = 3
3

16
or

16

T
d

d

π × τ × τ =
π

∴ Mean or average shear stress,

τm = 3

16 mT

dπ

and variable shear stress, τv = 3

16 vT

dπ
where Tm = Mean or average torque,

Tv = Variable torque, and

d = Diameter of the shaft.

The equation (iii) may now be written as follows :

Working or design shear stress,

τ = 3 3 3

16 16 16τ ⎡ τ ⎤⎛ ⎞ ⎛ ⎞
+ × = + ×⎢ ⎥⎜ ⎟ ⎜ ⎟τ τπ π π ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

y ym v
fs m fs v

e e

T T
K T K T

d d d

∴ F.S. =

3

16

y

y
m fs v

e

T K T
d

τ
⎡ τ ⎤⎛ ⎞

+ ×⎢ ⎥⎜ ⎟τ⎝ ⎠π ⎣ ⎦
where Kfs = Fatigue stress concentration factor for torsional or shear loading.

Note : For shafts made of ductile material, τy = 0.5 σy, and τe = 0.5 σe may be taken.

4.  Combined bending and torsion of circular shafts
In case of combined bending and torsion of circular shafts, the maximum shear stress theory

may be used. According to this theory, maximum shear stress,

τmax =
2 21

( ) 4
. . 2
y

bF S

τ
= σ + τ

=

2 2

3 3

1 32 16
4

2

⎡ ⎤ ⎡ ⎤⎧ σ ⎫ ⎧ τ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪+ × + + ×⎢ ⎥ ⎢ ⎥⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟σ τπ π⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦

y y
m f v m fs v

e e

M K M T K T
d d

=

2 2

3

16 y y
m f v m fs v

e e

M K M T K T
d

⎡ σ ⎤ ⎡ τ ⎤⎛ ⎞ ⎛ ⎞
+ × + + ×⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟σ τπ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

The majority of rotating shafts carry a steady torque and the loads remain fixed in space in both
direction and magnitude. Thus during each revolution every fibre on the surface of the shaft under-
goes a complete reversal of stress due to bending moment. Therefore for the usual case when Mm = 0,
Mv = M, Tm = T and Tv = 0, the above equation may be written as

2

2
3

16

. .
y y

f
e

K M T
F S d

τ ⎡ σ ⎤⎛ ⎞
= × +⎢ ⎥⎜ ⎟σ⎝ ⎠π ⎣ ⎦

Note: The above relations apply to a solid shaft. For hollow shaft, the left hand side of the above equations must
be multiplied by (1 – k4), where k is the ratio of inner diameter to outer diameter.
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Example 6.15. A centrifugal blower rotates at 600 r.p.m. A belt drive is used to connect the

blower to a 15 kW and 1750 r.p.m. electric motor. The belt forces a torque of 250 N-m and a force of
2500 N on the shaft. Fig. 6.20 shows the location of bearings, the steps in the shaft and the plane in
which the resultant belt force and torque act. The ratio of the journal diameter to the overhung shaft
diameter is 1.2 and the radius of the fillet is 1/10th of overhung shaft diameter. Find the shaft diameter,
journal diameter and radius of fillet to have a factor of safety 3. The blower shaft is to be machined
from hot rolled steel having the following values of stresses:

Endurance limit = 180 MPa; Yield point stress = 300 MPa; Ultimate tensile stress = 450 MPa.

Solution. Given: *NB = 600 r.p.m. ; *P = 15 kW; *NM = 1750 r.p.m. ; T = 250 N-m = 250 × 103

N-mm; F = 2500 N ; F.S. = 3; σe = 180 MPa = 180 N/mm2 ; σy = 300 MPa = 300 N/mm2 ; σu = 450
MPa = 450 N/mm2

Fig. 6.20

Let D = Journal diameter,

d = Shaft diameter, and r = Fillet radius.

∴ Ratio of journal diameter to shaft diameter,

D/d = 1.2 ...(Given)

and radius of the fillet, r = 1/10 × Shaft diameter (d) = 0.1 d

∴ r/d = 0.1 ...(Given)

From Table 6.3, for D/d = 1.2 and r/d = 0.1, the theoretical stress concentration factor,

Kt = 1.62

The two points at which failure may occur are at the end of the keyway and at the shoulder fillet.
The critical section will be the one with larger product of Kf × M. Since the notch sensitivity factor q
is dependent upon the unknown dimensions of the notch and since the curves for notch sensitivity
factor (Fig. 6.14) are not applicable to keyways, therefore the product Kt × M shall be the basis of
comparison for the two sections.

∴  Bending moment at the end of the keyway,

Kt × M = 1.6 × 2500 [100 – (25 + 10)]  = 260 × 103 N-mm

...(Q Kt for key ways = 1.6)

and bending moment at the shoulder fillet,

Kt × M = 1.62 × 2500 (100 – 25) = 303 750 N-mm

Since Kt × M at the shoulder fillet is large, therefore considering the shoulder fillet as the critical
section. We know that

2

2
3

16

. .
y y

f
e

K M T
F S d

τ ⎡ σ ⎤⎛ ⎞
= × +⎢ ⎥⎜ ⎟σπ ⎢ ⎥⎝ ⎠⎣ ⎦

* Superfluous data
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2
3 2

3

0.5 300 16 300
303750 (250 10 )

3 180

⎡× ⎛ ⎞= × + ×⎢⎜ ⎟
⎝ ⎠⎣πd

... (Substituting, τy = 0.5 σy)

50 =
3

3
3 3

16 2877 10
565 10

d d

×× × =
π

∴ d 3 = 2877 × 103/50 = 57 540   or   d = 38.6 say 40 mm Ans.
Note: Since r is known (because r/d = 0.1 or r = 0.1d = 4 mm), therefore from Fig. 6.14, the notch sensitivity
factor (q) may be obtained. For r = 4 mm, we have q = 0.93.

∴ Fatigue stress concentration factor,

Kf = 1 + q (Kt – 1) = 1 + 0.93 (1.62 – 1) = 1.58

Using this value of Kf instead of Kt, a new value of d may be calculated. We see that magnitudes of Kf and
Kt are very close, therefore recalculation will not give any improvement in the results already obtained.

EEEEEXEXEXEXEXERRRRRCISECISECISECISECISESSSSS

1. A rectangular plate 50 mm × 10 mm with a hole 10 mm diameter is subjected to an axial load of 10 kN.
Taking stress concentration into account, find the maximum stress induced. [Ans. 50 MPa]

2. A stepped shaft has maximum diameter 45 mm and minimum diameter 30 mm. The fillet radius is 6
mm. If the shaft is subjected to an axial load of 10 kN, find the maximum stress induced, taking stress
concentration into account. [Ans. 22 MPa]

3. A leaf spring in an automobile is subjected to cyclic stresses. The average stress = 150 MPa; variable
stress = 500 MPa; ultimate stress = 630 MPa; yield point stress = 350 MPa and endurance limit = 150
MPa. Estimate, under what factor of safety the spring is working, by Goodman and Soderberg formulae.

[Ans. 1.75, 1.3]

4. Determine the design stress for bolts in a cylinder cover where the load is fluctuating due to gas
pressure. The maximum load on the bolt is 50 kN and the minimum is 30 kN. The load is unpredict-
able and factor of safety is 3. The surface of the bolt is hot rolled and the surface finish factor is 0.9.

During a simple tension test and rotating beam test on ductile materials (40 C 8 steel annealed), the
following results were obtained :

Diameter of specimen = 12.5 mm; Yield strength = 240 MPa; Ultimate strength = 450 MPa; Endurance
limit = 180 MPa. [Ans. 65.4 MPa]

5. Determine the diameter of a tensile member of a circular cross-section. The following data is given :

Maximum tensile load = 10 kN; Maximum compressive load = 5 kN; Ultimate tensile strength = 600
MPa; Yield point = 380 MPa; Endurance limit = 290 MPa; Factor of safety = 4; Stress concentration
factor = 2.2 [Ans. 24 mm]

6. Determine the size of a piston rod subjected to a total load of having cyclic fluctuations from 15 kN in
compression to 25 kN in tension. The endurance limit is 360 MPa and yield strength is 400 MPa. Take
impact factor = 1.25, factor of safety = 1.5, surface finish factor = 0.88 and stress concentration factor
= 2.25. [Ans. 35.3 mm]

7. A steel connecting rod is subjected to a completely reversed axial load of 160 kN. Suggest the suitable
diameter of the rod using a factor of safety 2. The ultimate tensile strength of the material is 1100
MPa, and yield strength 930 MPa. Neglect column action and the effect of stress concentration.

[Ans. 30.4 mm]

8. Find the diameter of a shaft made of 37 Mn 2 steel having the ultimate tensile strength as 600 MPa and
yield stress as 440 MPa. The shaft is subjected to completely reversed axial load of 200 kN. Neglect
stress concentration factor and assume surface finish factor as 0.8. The factor of safety may be taken
as 1.5. [Ans. 51.7 mm]
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9. Find the diameter of a shaft to transmit twisting moments varying from 800 N-m to 1600 N-m. The

ultimate tensile strength for the material is 600 MPa and yield stress is 450 MPa. Assume the stress
concentration factor = 1.2, surface finish factor = 0.8 and size factor = 0.85. [Ans. 27.7 mm]

10. A simply supported shaft between bearings carries a steady load of 10 kN at the centre. The length of
shaft between bearings is 450 mm. Neglecting the effect of stress concentration, find the minimum
diameter of shaft. Given that

Endurance limit = 600 MPa; surface finish factor = 0.87; size factor = 0.85; and factor of safety = 1.6.
[Ans. 35 mm]

11. Determine the diameter of a circular rod made of ductile material with a fatigue strength (complete
stress reversal) σe = 280 MPa and a tensile yield strength of 350 MPa. The member is subjected to a
varying axial load from 700 kN to – 300 kN. Assume Kt = 1.8 and F.S. = 2. [Ans. 80 mm]

12. A cold drawn steel rod of circular cross-section is subjected to a variable bending moment of 565 N-
m to 1130 N-m as the axial load varies from 4500 N to 13 500 N. The maximum bending moment
occurs at the same instant that the axial load is maximum. Determine the required diameter of the rod
for a factor of safety 2. Neglect any stress concentration and column effect. Assume the following
values:

Ultimate strength =  550 MPa

Yield strength =  470 MPa

Size factor =  0.85

Surface finish factor =  0.89

Correction factors =  1.0 for bending

=  0.7 for axial load

The endurance limit in reversed bending may be taken as one-half the ultimate strength. [Ans. 41 mm]

13. A steel cantilever beam, as shown in Fig. 6.21, is subjected to a transverse load at its end that varies
from 45 N up to 135 N down as the axial load varies from 110 N (compression) to 450 N (tension).
Determine the required diameter at the change of section for infinite life using a factor of safety of 2.
The strength properties are as follows:

Ultimate strength = 550 MPa

Yield strength = 470 MPa

Endurance limit = 275 MPa

Fig. 6.21

The stress concentration factors for bending and axial loads are 1.44 and 1.63 respectively, at the
change of cross-section. Take size factor = 0.85 and surface finish factor = 0.9. [Ans. 12.5 mm]

14. A steel shaft is subjected to completely reversed bending moment of 800 N-m and a cyclic twisting
moment of 500 N-m which varies over a range of ± 40%. Determine the diameter of shaft if a reduction
factor of 1.2 is applied to the variable component of bending stress and shearing stress. Assume
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(a) that the maximum bending and shearing stresses are in phase;

(b) that the tensile yield point is the limiting stress for steady state component;

(c) that the maximum shear strength theory can be applied; and

(d) that the Goodman relation is valid.

Take the following material properties:

Yield strength = 500 MPa ; Ultimate strength = 800 MPa ; Endurance limit = ± 400 MPa.

[Ans. 40 mm]

15. A pulley is keyed to a shaft midway between two anti-friction bearings. The bending moment at the
pulley varies from – 170 N-m to 510 N-m and the torsional moment in the shaft varies from 55 N-m
to 165 N-m. The frequency of the variation of the loads is the same as the shaft speed. The shaft is
made of cold drawn steel having an ultimate strength of 540 MPa and a yield strength of 400 MPa.
Determine the required diameter for an indefinite life. The stress concentration factor for the keyway
in bending and torsion may be taken as 1.6 and 1.3 respectively. The factor of safety is 1.5. Take size
factor = 0.85 and surface finish factor = 0.88. [Ans. 36.5 mm]

[Hint. Assume σe = 0.5 σu; τy = 0.5 σy; τe = 0.55 σe]

QQQQQUEUEUEUEUESTSTSTSTSTIONSIONSIONSIONSIONS

1. Explain the following terms in connection with design of machine members subjected to variable
loads:

(a) Endurance limit, (b) Size factor,

(c) Surface finish factor, and (d) Notch sensitivity.

2. What is meant by endurance strength of a material? How do the size and surface condition of a
component and type of load affect such strength?

3. Write a note on the influence of various factors of the endurance limit of a ductile material.

4. What is meant by ̀ stress concentration'? How do you take it into consideration in case of a component
subjected to dynamic loading?

5. Illustrate how the stress concentration in a component can be reduced.

6. Explain how the factor of safety is determined under steady and varying loading by different methods.

7. Write Soderberg's equation and state its application to different type of loadings.

8. What information do you obtain from Soderberg diagram?

OBJECTOBJECTOBJECTOBJECTOBJECTIVE  IVE  IVE  IVE  IVE  TTTTT YPYPYPYPYPE  QE  QE  QE  QE  QUEUEUEUEUESTSTSTSTSTIONSIONSIONSIONSIONS

1. The stress which vary from a minimum value to a maximum value of the same nature (i.e. tensile or
compressive) is called

(a) repeated stress (b) yield stress
(c) fluctuating stress (d) alternating stress

2. The endurance or fatigue limit is defined as the maximum value of the stress which a polished
standard specimen can withstand without failure, for infinite number of cycles, when subjected to
(a) static load (b) dynamic load
(c) static as well as dynamic load (d) completely reversed load

3. Failure of a material is called fatigue when it fails
(a) at the elastic limit (b) below the elastic limit
(c) at the yield point (d) below the yield point
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4. The resistance to fatigue of a material is measured by

(a) elastic limit (b) Young's modulus
(c) ultimate tensile strength (d) endurance limit

5. The yield point in static loading is ............... as compared to fatigue loading.
(a) higher (b) lower (c) same

6. Factor of safety for fatigue loading is the ratio of
(a) elastic limit to the working stress
(b) Young's modulus to the ultimate tensile strength
(c) endurance limit to the working stress
(d) elastic limit to the yield point

7. When a material is subjected to fatigue loading, the ratio of the endurance limit to the ultimate
tensile strength is
(a) 0.20 (b) 0.35
(c) 0.50 (d) 0.65

8. The ratio of endurance limit in shear to the endurance limit in flexure is
(a) 0.25 (b) 0.40
(c) 0.55 (d) 0.70

9. If the size of a standard specimen for a fatigue testing machine is increased, the endurance limit for the
material will
(a) have same value as that of standard specimen (b) increase (c) decrease

10. The residential compressive stress by way of surface treatment of a machine member subjected to
fatigue loading
(a) improves the fatigue life (b) deteriorates the fatigue life
(c) does not affect the fatigue life (d) immediately fractures the specimen

11. The surface finish factor for a mirror polished material is
(a) 0.45 (b) 0.65
(c) 0.85 (d) 1

12. Stress concentration factor is defined as the ratio of
(a) maximum stress to the endurance limit (b) nominal stress to the endurance limit
(c) maximum stress to the nominal stress (d) nominal stress to the maximum stress

13. In static loading, stress concentration is more serious in
(a) brittle materials (b) ductile materials
(c) brittle as well as ductile materials (d) elastic materials

14. In cyclic loading, stress concentration is more serious in
(a) brittle materials (b) ductile materials
(c) brittle as well as ductile materials (d) elastic materials

15. The notch sensitivity q is expressed in terms of fatigue stress concentration factor Kf and theoretical
stress concentration factor Kt, as
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ANSWEANSWEANSWEANSWEANSWERRRRRSSSSS

1. (c) 2. (d) 3. (d) 4. (d) 5. (a)

6. (c) 7. (c) 8. (c) 9. (c) 10. (a)

11. (d) 12. (c) 13. (a) 14. (b) 15. (b)
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